સમિકરણ ${x^{1 + {{\log }_{10}}x}} = 100000x$ ના ઉકેલોોનો ગુુુણાકાર ....... થાય.
$10$
$10^5$
$10^{-5}$
$1$
વિધાન $-1$ : સમીકરણ $x\, log\, x = 2 - x$ ની $x$ ના ઓછાંમાં ઓછી એક કિમંત $1$ અને $2$ ની વચ્ચે હશે .
વિધાન $-2$ : વિધેય $f(x) = x\, log\, x$ એ અંતરાલ $[1, 2]$ માં વધતું વિધેય છે અને $g (x) = 2 -x$ એ અંતરાલ $[ 1 , 2]$ માં ઘટતું વિધેય છે અને આ વિધેય ના આલેખો છેદબિંદુએ $[ 1 , 2]$ માં આવેલ છે .
ધારો કે $a,b,c\; \in R.$ જો $f\left( x \right) = a{x^2} + bx + c$ હોય કે જેથી $a + b + c = 3$ અને $f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) + xy,$ $\forall x,y \in R,$ તો $\mathop \sum \limits_{n = 1}^{10} f\left( n \right)$ની કિંમત મેળવો.
$f : R \to R$ માટે
$f(x) = \left\{ {\begin{array}{*{20}{c}}
{{x^2} + 2mx - 1\,,}&{x \leq 0}\\
{mx - 1\,\,\,\,\,\,\,\,\,\,\,\,\,,}&{x > 0}
\end{array}} \right.$
જો $f (x)$ એક-એક વિધેય હોય તો $'m'$ ની કિમતોનો ગણ મેળવો.
વિધેય $f(x){ = ^{7 - x}}{\kern 1pt} {P_{x - 3}}$ નો વિસ્તાર મેળવો.
જો વિધેય એ $f(x + y) = f(x)f(y)$ શરતનું પાલન કરે કે જયાં $x,\;y \in N$ હોય અને $f(1) = 3$અને $\sum\limits_{x = 1}^n {f(x) = 120} $ હોય તો $n$ ની કિંમત મેળવો